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A N D  G A S  I N J E C T I O N  F R O M  A B L U N T E D  S U R F A C E  
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New methods of controlling thermal regimes in a high-enthalpy spatial flow around a body are 
considered. They are related to gas injection from the blunted surface and heat overflow in the 
material of the shell. The effect of injection is analyzed for different thermal conductivities. It is 
shown that highly heat-conducting materials can be successfully used to decrease the maximum 
temperatures at the windward side due to intense heat removal to the region of  a porous spherical 
bluntness. 

For stationary heating regimes [1], heat overflow in the material of a body located in a high-enthalpy 
flow is an effective method of decreasing the temperature in regions with the maximum thermal loads. The 
analysis of the characteristics of nonstationary heat transfer for different boundary-layer flow regimes [2] 
showed that  the injection of a cooling gas is a reliable method of thermal protection of a structure from 
overheating. This injection involves an attenuation of the heat flux supplied to the surface and heat removal 
during gas filtration in the pores. In contrast to axisymmetric heating [1, 2], the difference in heat fluxes on the 
leeward and windward sides of a body at incidence can be quite significant [3], which causes heat overflow in the 
circumferential direction. Zinchenko et al. [3] studied the influence of thermophysicM properties of a number 
of materials on the temperature fields of the conical part of the body and concluded that it is reasonable to 
use highly heat-conducting coatings, which ensure intense heat removal to the region of a porous spherical 
bluntness. The problem of heat transfer in the region of the porous bluntness was not considered in that 
paper, and simplified boundary conditions were used at the interface between the spherical and conical parts 
of the body. 

In the present paper, we use a complete formulation of the problem in a compound body. The boundary 
conditions in mathematical modeling of heat transfer correspond to setting convective heat fluxes from the 
side of the gaseous phase for a spatial supersonic flow around a spherically blunted cone with account of the 
effect of injection from the surface of the porous bluntness. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  With account of the assumption of one-dimensionality of the 
process of filtration of the gas injected normally to the body surface and the one-temperature character of the 
porous medium, the conservation equation for energy in the conventional coordinate system related with the 
body centerline for a permeable spherical shell of a compound body (Fig. 1) is written in the following form: 
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Fig. 1 

For the conical part of the shell (region II in Fig. 1), the heat-conductivity equation is 

(rpcp)2 at am -g-~n~] + r2),2 --~s ] + - -  
- W J '  ( 1 . 2 )  

SA < S < SB, r2 = (RN -- n,)cosO + (s--  sA)sinO. 

System (1.1), (1.2) should be solved with the initial and boundary conditions 

Ti[t=o = 2in (i = i, 2). (1.3) 

We have 

q w - e l a T ~ , = - ) ~ r ,  aT' (1.4) 
0 n l  w 

on the external heated boundary of the gas flow/body interface 0A in the region of spherical bluntness (region 
I in Fig. 1) and 

aT2 (1.5) q .  - = 

on the external surface of the nonpermeable cone. Heat transfer on the internal surface of the permeable 
region I is specified using the Newton law with regard for injection: 

/ OTl h rlwCg(pV)w (T. _ T L)" 
AZt~nl) L -  (Hr,)------~ k=in (1.6) 

On the junction ring AD, we have the perfect contact conditions 

A~ OT, OT2 
-H a--s = A20s  ' T1 = T2. (1.7) 

The conditions of heat insulation are imposed on the lines DC and BC: 

= 0. (1 .8 )  
OT2 OT2 
Oni = O, O s  

For heat transfer with a plane of symmetry, we can write 

(aT,' I lOT,) 
-~-~] I ,=0  = \-~-~ ] ,== = o 

(i = 1, 2). (1.9) 

To prescribe the heat flux from the gaseous phase qw, we use the formulas derived by Zemlyanskii and 
Stepanov [4] for a spatial case of laminar and turbulent flow regimes in the boundary layer. To decrease the 
heat flux in the case of injection of a cooling gas whose composition coincides with the incoming air stream, we 
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use the formulas from [5]. For a laminar flow regime in the boundary  layer, we obtain the following equation 
for the porous spherical part in the coordinate system fitted to the  stagnation point  01: 

q w =  1. . ( h r - h w ) ,  a 0 = 1.05V~0s[O.55+O.45cos(2g)] 
(Rulp~)o.5 

h r = h e o r ( P ~  ('r-1)/-r 2Pr~ - - - [ 1  ( P e ~  (-r-1)/'rO'5 ], _ 

L p~ol  , ,v , , , i  , V,n ,,p-~ol ] , 01 <~ 5 <~ s , ,  

h~ = b l T  w + b2T~/2, g = arccos (cos gcos ~7 + sin gsin 3 cos r#). 

For a tu rbu len t  l~oundary-layer flow regime, we have 

q w  -~ ( c ~ ) ~  exp [ 
0.37(p.)w] 

(~/cp)0 j(h, -h~), 
, 

h r =  L 

( ~ ) 0  . . . . .  1 25 0 8 1o.~ vo~" p~ 
= R0v2(1 + hw/heo)213 (3 .75sing - 3.5 sin 2 g), 

] + pr l /3  , ,~, < ,s ~< Sl- 

To evaluate  the effect of injection on the heat flux in the screening region, we use the data [6] and 
formulas [3] obta ined by processing of the results of exact numerical  calculations of a spatial boundary layer 
and a viscous shock layer [7, 8]: 

q~ = (1 - klb#'2)(h~ - h~), = 

k = ('r - 1 + 2 / M ~ ) / ( ~  + 1), 

For the  flow rate of the cooling gas 

we have 

16.4V 1"25p~os2.2(pUp~0)~'/~,. 
h 2/3 0.4-0.2 ' a~ + ~lhoo) k r2~ 

SA ~ S ~ SB. 

(pv)~(g) = (pV)w(01)(1 + a sin 2 .~), 

b : 2 ( p y ) w ( 0 1 ) { 1  - cos ~1 -[- a[2/3 -- COS sl + (1/3) cos 3 Sl]} 
(otlcp)~ - gl)[2 cos 0 "4" (s -- gl) sin 0] 

COS S1 : COS "~1 COS/3 "4" sin ,Sl sin/3 cos 77, Sl = SA = ~r/2 -- 0. 

(1.10) 

Here and below, t is the time, r and z are the transverse and longitudinal components  of the cylindrical 
coordinate sys tem,  hi ,  s, and 77 are the components of the conventional coordinate system, T, p, and p are 
the temperature ,  pressure, and true density, (pV)w is the flow rate of the cooling gas, cp and A are the heat 
capacity and thermal  conductivity, h is the enthalpy, r l ,  r2, and H are the Lam~ coefficients, ~ and RN are 
the porosity and the radius of the spherical bluntness, a is the Stefan-Bol tzmann constant ,  r (i = 1, 2) is the 
emissive power of the surface of the exposed material, g. is the coordinate of the point  of loss of stability in 
the coordinate system with the origin at the stagnation point , /3  and 0 are the angle of at tack and conicity, Re 
and Pr are the  Reynolds and Prandt l  numbers, L is the shell thickness, V~, poo, and M ~  are the free-stream 
velocity, density, and Mach number,  and/~ is the gas-flow viscosity. The subscripts e0 and w correspond to 
the conditions at the external edge of the boundary layer at the stagnation point and at the interface between 
the gaseous and solid phases, the subscripts 1 and 2 correspond to the number of the region of the compound 
shell, g to the  gas characteristics in a porous medium, the subscripts "in" and the asterisk to the initial and 
characteristic parameters ,  the bar indicates dimensionless quantities,  the superscript 0 marks the parameters 
a/% and qw in the  absence of injection, L corresponds to the quantit ies at the internal surface of the shell, E 
to the total values of the quantities, "e" to the equilibrium radiation temperature,  and "f" to the final values 
of the quantit ies.  

2. C a l c u l a t i o n  M e t h o d  a n d  In i t i a l  D a t a .  The  boundary-value problem (1.1)-(1.9) was solved 
numerically using implicit difference equations on the basis of a locally one-dimensional splitting scheme 
[9]. Since the shock-capturing method is used for curves BAO due to the conjugation condition (1.7), the 
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circumferential coordinate r/varies within 0 ~ rl ~< ~'. A 11 x 41 x 11 grid was used and the t ime of solution of 
the basic (three-dimensional) variant until reaching a steady distribution of the body tempera ture  was 15 min 
on a IBM-486 computer.  The solution differed by no more than 1.5 % if the number of nodes in the spatial 
grid was increased by a factor of two. The numerical solution obtained with an automatic choice of the time 
step from the condition of prescribed accuracy differed from the calculation with a constant t ime step only 
by 0.5 %; therefore, to save computer time, the numerical results were obtained at a constant t ime step. 

The ftow around a spherically blunted cone occurred in a turbulent  flow regime in the boundary layer 
[Re = p e o R g ( 2 h e o ) ~  ~ 0.7 �9 106 is the Reynolds number found from the stagnation parameters]. The 
pressure distribution over the body surface normalized to the stagnation pressure p = Pe/PeO was found from 
solving a spatial gas-dynamic problem [10]. The thermophysical constants of copper were borrowed from [5], 
air was chosen as the cooling gas [11], and the main results were obtained for the following parameters: 

c s  = cp:p l (1  -- ~ )  --k Cgpg~, A~ = AI(1 -- ~2) -t- Ag~, 

Cg = b l + b 2 T ,  h~o = boo[1 + 0 . 5 ( ~ , -  1)ML], 

7]n = Too = 300 K, cpoo = 103 J / ( k g .  K), 

Ai = 386 W / ( m  �9 K), pg = 1.3 k g / m  s, 

pi = 8950kg/m 3, ~g = 0 . 0 2 6 W / ( m . K ) ,  

cp~ = 3 7 0 J / ( k g - K ) ,  L = 5 . 1 0  - 3 m ,  

si = 0.85, i = 1 , 2 ,  R N  = 1.85-10 - 2 m ,  

poo = 0.0208 sec 2 �9 kgf/m 4, Voo = 2.08 km/sec,  

fl = 20 ~ , 0 = 5  ~ , b: = 965.5, b2=0.147, 

= 0.34, 3 '=1-4 ,  Moo = 6, P r = 0 . 7 2 ,  

k: = 0.285, k2 = 0.165, a = 3. 

To control the numerical solution of the problem, we used an analytical solution for stationary heat 
transfer in the form of an integral conservation law. Then the surface temperature  satisfies the relationship 

7r s 1 s f  

0 0 Sl 

which is obtained by integration of the initial boundary-value problem in the steady case. For Ai --~ cc and 
A2 --+ co, the tempera ture  field in the material of the body becomes uniform and the value of the desired 
temperature is in good agreement with the calculation results obtained by solving the nonlinear algebraic 
equation 

81 Sf S 1 

0 0 Sl 0 

s I sf  

0 Sl heo - hw ' 

which follows from (2.1) if the heat flux formula is used in the form q,~ -= (&/cp)(heo - c g T w ) ,  where Cg = const. 
3. A n a l y s i s  o f  t h e  N u m e r i c a l  Solu t ion .  Figure 2 shows the surface temperature Tw and convective 

heat flux from the gaseous phase qw (solid curves 1-3) as functions of the coordinate ~ on the windward and 
leeward sides of the plane of symmetry  for (pv)w = O. Curves 1-3 correspond to times t = 0, 10, and 200 sec 
(in the latter case, a steady regime of the body heating process is observed). To evaluate the effect of heat 
overflow in the circumferential direction, we considered the solution of a two-dimensional problem resulting 
from (1.1), (1.2). The results corresponding to this solution are presented by dashed curves (the dashed and 
solid curves 1 for q~, and Tw coincide at t = 0). The dot-and-dashed curve shows the distr ibution of the 
equilibrium radiation temperature  Twe in the plane of symmetry  on the  windward and leeward sides, which 
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was found from the condit ion of energy conservation on the porous and conical surfaces 

qw + cg(pv)w(Tin - T~r = e l a T ~ e  , qw = e2aT4we (3.1) 

and defines the max imum reachable tempera ture  of the surface in the absence of heat overflow in the 
longitudinal and circumferential  directions. Because of external heating, the surface temperature  of the 
nonpermeable  body increases and its highest value corresponds to the equilibrium radiation tempera ture  
in the region of the m a x i m u m  heat flux for a turbulent  flow regime in the boundary layer near the stagnation 
point.  As should be expected,  accounting for heat overflow gives a significant decrease in Tw for a highly 
heat-conducting material like copper. Neglect of heat  overflow in the circumferential direction overestimates 
the surface temperature  at the  current moments  of t ime by more than 300 K and significantly underest imates  
T~, on the  leeward side (solid and dashed curves 2). Note also that ,  when the steady process is reached, the 
surface temperature  on the  leeward side is significantly higher than the equilibrium radiation tempera ture  T~e 
because of longitudinal and circumferential overflow of heat.  Along with the calculation of Twe from conditions 
(3.1), we solved the ini t ial-boundary problem for a poorly heat-conducting material,  such as asbestos cement 
[)q = 0.349 W/(m.K) ,  cp~ = 837 J / (kg.K),  and Pi = 1800 k g / m  3, i = 1 and 2]. When the steady regime was 
reached after equalization of the  tempera ture  fields across the shell, the values of Tw coincided with Twe (the 
curve marked by crosses in Fig. 2), since the heating process for this material is one-dimensional. 

The  calculation results for the steady regime of the heating process for Ai --* oo (i = 1, 2) show tha t  the 
t empera ture  profile in the exposed material becomes uniform (straight lines 3') and the values of tempera ture  
in three-dimensional heat ing are in good agreement with the calculation results from formula (2.2). Figure 3 
(the notat ion is the same as in Fig. 2) shows the distributions of Tw and qw along the circumferential coordinate 
on the conical part of the shell in the cross section .~ = 2.3 close to the spherical tip. A significant difference 
in tempera ture  in the three-dimensional  and two-dimensional cases is observed in the most heat-loaded cross 
section q = 0 (,-,269 K) and the  cross section 7 /~  0.87r (,,,258 K) at t = 10 sec. Nevertheless, the max imum 
difference in Tw for t = 10 sec is observed at the peripheral part of the shell for g = SB and T/ = 0 and 
approximately amounts to  348 K (see Fig. 2). The  nonmonotonic pressure distribution pe = pe(s ,  TI) along 
the circumferential coordinate defines also the nonmonotonic  behavior of the copper temperature for Ai ---* o~ 
(i = 1, 2) in the two-dimensional case (dashed curve 3'). 

We consider the effect of the flow rate of the  cooling gas from the blunted surface. Figure 4 shows 
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the distr ibutions of the heat fluxes qw (solid curves 1 and 1') and the surface temperature  Tw for the initial 
t ime t = 0 (curves 1 and 1') and in the steady regime of the process (solid curves 2 and 2'). Curves 1 and 
2 and 1' and 2' were obtained for the flow rates (pv)w(01) = 6 and 12 kg/(m2.sec) at the stagnation point 
01, respectively. The flow rate of the  cooling gas defined by formula (1.10) in the vicinity of the plane of 
symmet ry  is shown by the dashed curves 1 and 1' for (pV)w(01) = 6 and 12 kg/(m2.sec), respectively. The  
dot-and-dashed curves 2 and 2 ~ correspond to the equil ibrium radiation tempera ture  with different values of 
the flow rate. Straight lines 2 and 2 t correspond to the da ta  obtained for ~ --* oo and agree with the results 
obtained using formulas (2.2). The  injection of a cooling gas from a porous bluntness leads to a significant 
decrease (by a factor of 2.5) in the  max imum of qw on the  sphere and its twofold decrease on the conical part  
of the body (solid curves in" Figs. 2 and 4). In addition, the heat is also absorbed here during gas filtration 
in the pores. As a result, the tempera ture  of the porous hemisphere in the most  heat-loaded cross section 
(77 = 0) in the  steady heat-transfer regime (t = 200 sec) at (pv)w(01) = 6 and 12 kg/(m2.sec) does not exceed 
860 and 710 K, respectively. 

Figure 5 shows the circumferential distr ibution of the surface tempera ture  in the steady regime of body 
heat ing (t = 200 sec). The solid and dashed curves correspond to three-dimensional and two-dimensional cases 
at two values of the longitudinal coordinate ~ (solid and dashed curves 1 and 1 ~ correspond to g = 2.3 and 
curves 2 and 2' to g = gB) for (pv)w(01) = 6 and 12 kg/(m2.sec); the equilibrium radiation temperature  is 
plot ted by dot-and-dashed curves 2 and 2 ~. As follows from Figs. 4 and 5, the surface temperature distribution 
with injection of a cooling gas is qualitatively different from the distribution Tw(s, T1) for (pv)w = 0 for different 
finite values of )~i (i = 1, 2). The  tempera ture  Tw on the porous part of the shell can exceed the corresponding 
value of :/'we, whereas the surface tempera ture  on the conical part, both on the  leeward and windward sides, 
becomes significantly lower than  the  equilibrium radiation temperature  Twe. 

Note that  the shell can be destroyed as t --* oo in the two-dimensional case at the periphery (g = gB, 
77 = 0), where the maximum tempera tu re  of the body is achieved (dashed curve 2 in Fig. 5), whereas the body 
t empera tu re  does not reach the  copper melt ing point in the case of three-dimensional heat transfer because 
of significant heat overflow in the  circumferential direction (sohd curve 2). It follows from the analysis of 
Fig. 5 tha t  the  injection of a cooling gas at the s tat ionary region of heat transfer causes a more significant 
stratification of the tempera ture  curves Tto at ~/= 0 and 0.8~r than in the heating regime at (pv)w = 0. The  
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reason is the behavior of the convective heat flux from the gaseous phase qw caused by the greater mass of the 
cooling gas [according to formula (1.10)], which enters the screening zone on the leeward side [dashed curve 1 
for (pv)w in Fig. 4]. 

The surface temperature corresponding to Ai ~ oo (i = 1, 2) and steady three-dimensional heat 
transfer at (pv)w ~ 0 (curves 1 and 2 and 1' and 2' in Figs. 4 and 5) decreases more than twice as compared 
with the data plotted in Figs. 2 and 3. The results obtained for different values (pv)w(01) = 0-12 kg/(m2-sec) 
confirm the conclusion that it is reasonable to use highly heat-conducting materials, which ensure intense heat 
removal to the region of the permeable bluntness. It follows from Figs. 4 and 5 that injection considerably 
decreases the maximum temperatures, but a much greater effect of decreasing the maximum temperature of 
the conical surface in the screening zone is exerted by using heat-conducting materials. It follows from Fig. 4 
that, as the flow rate of the cooling gas increases, the temperature on the porous spherical bluntness decreases, 
tending to the temperature of the injected gas, which justifies the validity of the assumption [3] of using the 
boundary conditions of the first kind at the interface between the spherical and conical parts of the shell at 
intense injection from the blunted surface. 

Thus, the thermophysical characteristics of the material of the exposed body have been studied in 
the present paper in the absence and presence of injection from a spherical blunted surface at incidence. In 
this case, the role of circumferential overflow of heat becomes quite significant because of the difference in 
heat fluxes on the leeward and windward sides. The effect of injection from the blunted surface has been 
analyzed for thermal conductivity varying from zero in the regime of equilibrium radiation temperature to 
A ~ cx~, for which the formulas for the isothermal wall temperature are derived. It has been shown that highly 
heat-conducting materials can be successfully used to decrease the maximum temperatures of the body due 
to intense heat removal to the region of a porous spherical bluntness. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
00964). 
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